izl

ARSI X

ERSNE s Thi s A

£33

R N T

‘

—~%

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 :

GO6F 9/445, 9/45 Al

(11) International Publication Number:

(43) International Publication Date:

WO 99/48000

23 September 1999 (23.09.99)

(21) International Application Number: PCT/US98/16062

(22) International Filing Date: 28 July 1998 (28.07.98)

(30) Priority Data:

09/039,653 16 March 1998 (16.03.98) us

(71) Applicant: ACUITY IMAGING, LLC [US/US}; 9 Townsend
West, Nashua, NH 03063 (US).

(72) Inventors: LIMONDIN, Serge; 33 Tarry Lane, Milford, NH
03055 (US). DZIEZANOWSKI, Joe; Wittemore Road,
Salisbury, NH 03268 (US).

(74) Agents: BOURQUE, Daniel, J. et al.; Law Offices of Daniel J.
Bourque, PA, Suite 303, 835 Hanover Street, Manchester,
NH 03104 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR,
BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE,
GH, GM, HU, ID, 1L, 1S, JP, KE, KG, KP, KR, KZ, LC,
LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX,
NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ,
TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARTIPO-patent
(GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent
(AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent
(AT, BE, CH, CY, DE, DK, ES, Fl, FR, GB, GR, IE, IF,
LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI,
CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published
With international search report.

(54) Title:

COMPOSITE OBJECT

OBJECT ORIENTED METHOD OF STRUCTURING A SOFTWARE STEP PROGRAM

HOST DISPLAY
OBJECT

COMPOSITE GUI

800

_childiist

MD\N

620

STEP OBJECT DATUM

OBJECT

EDITOR OBJECT

610+ STEP

DATUM

630 EDITOR

612+

_datumiist refto

(57) Abstract

An object oriented method of structuring an executable software step program creates programs by composing a set of software
objects or steps (200) self-organized into a hierarchical structure which provides the execution order, the connection of inputs (510) to
outputs (234) at each step and between steps, and output data transformations. The step hierarchy also takes advantage of commonality
between steps that perform similar operations. The method makes applications very easy to set up and run while ensuring that challenging
applications can be provided and performed. Programs are built from a recipe database or directly using an easy to use point and click
graphical user interface. The method also provides a mechanism for the step program to create the user interface components that allow
the training and setting of parameters using the GUI (Graphical User Interface) (690) library native to the platform (computer or system)
running the program. Thus, step programs, such as machine vision programs, can be run unchanged on different CPU architectures and
take advantage of image processing acceleration hardware when available.

SDOCID: <WO__9948000A1_|_>

TR e st -

R by

RIS

AL,

SN N T

y

[N

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.
AL Albania ES Spain LS Lesotho St Slovenia
AM Armenia FI Finland LT Lithuania SK Slovakia
AT Auvstria FR France LU Luxembourg SN Senegal
AU Australia GA Gabon LV Latvia Sz Swaziland
AZ Azerbaijan GB United Kingdom MC Monaco TD Chad
BA Bosnia and Herzegovina GE Georgia MD Republic of Moldova TG Togo
BB Barbados GH Ghana MG Madagascar TJ Tajikistan
BE Belginm GN Gutinea MK The former Yugoslav ™ Turkmenistan
BF Burkina Faso GR Greece Republic of Macedonia TR Turkey
BG Bulgaria HU Hungary ML Mali T Trinidad and Tobago
BJ) Benin 1E Treland .MN Mongolia UA Ukraine
BR Brazil IL Isract MR Maurilania UG Uganda
BY Belarus 1s Iceland MW Matawi us United States of America
CA Canada IT Tealy MX Mexico Uz Uzbekistan
CF Central African Republic JP Japan NE Niger VN Viet Nam
CG Congo KE Kenya NL Netherlands YU Yugoslavia
CH Switzerland KG Kyrgyzstan NO Norway A4 Zimbabwe
Cl Cate d’Ivoire KP Democratic People’s NZ New Zcaland
cM Cameroon Republic of Korea PL Poland
CN China KR Republic of Korea PT Portugal
Ccu Cuba KZ Kazakstan RO Romania
cz Czech Republic LC Saint Lucia RU Russian Federation
DE Germany LI Liechtenstein SD Sudan
DK Denmark LK Sri Lanka SE Sweden
EE Estonia LR Liberia . SG Singapore

NSDOCID: <WO____9948000A1_j_>

TP RN T LR N L R A e SN
.

“

10

15

20

25

30

WO 99/48000 PCT/US98/16062

OBJECT ORIENTED METHOD OF STRUCTURING A SOFTWARE STEP PROGRAM

FIELD OF THE INVENTION

This invention relates generally to computer programs and

more particularly, to the object-oriented representation and
architecture of such software programs and to the
representation and properties of computer programs such as
those programs used to describe and effectuate real time
control of various manufacturing and process control
applications.

BACKGROUND OF THE INVENTION

The ultimate goal of a computer (application) program

is to control the operation or processing of some form of
data. More specifically, the goal of a machine vision
system application program is to extract important features
from image data from which a description, interpretation, or
understanding of the objects in the image can be provided by
the machine (computerj for the purpose of classification,
reporting and decision making.

-In a machine vision application, for example, a set of
operations or steps are executed .in sequence. A typical
machine vision program flow diagram is shown in Figure 1.
The steps generally begin with the acquisition of an input
image, which is captured by a camera and placed in memory,
step 1. The image 1is optionally preprocessed, step 2,
before the image is segmented and features are extracted
from it. Segmentation and feature extraction, step 3, of
the image into one or more distinct objects can be
accomplished, for example by extracting their boundaries.

Features can be any data that describes or identifies parts,

SDOCID: <WO__8948000A1_t_> SUBSTITUTE SHEET (RULE 26)

SRR LTI R D 7 o e i e 2 e

IR

&
®
5_:'
4
it
4]
;A;
z
I
é

RSN S

10

15

20

25

30

¥
i
5

WO 99/48000 ~ PCT/US98/16062

features (holes, etc.) and objects in the camera scene, such
as size, area, length, distance or like parameters.

Features are wusually expressed 1in pixel wunits that
describe the geometric position of a feature in the image
relative to some fixed position in the image such as the top
left corner of the image (also called an image coordinate
system), or in physical units like “mm” or inches (also
called a camera coordinate system) if the position of the
camera 1in the scene is known or can be measured (usually
referred to as calibrating the camera). These features
are typicélly checked against tolerances or classified into
various categories, step 4, before a decision, step 5, can
be made or pass/fail status and results obtained, step 6.
Reports can also be generated, detailing. the processing
application, step 7. External control inputs, step 8, are
used to activate the tolerance checking and to provide

nominal tolerance values during execution for a particular

feature.

SUMMARY OF THE INVENTION

The object oriented method of structuring a software

step program, which 1is the subject of the present invention .

and described herein, has many advantages such as it:

1) Makes simple vision applications very easy to set up,
train and run, while ensuring that complex applications
can also be readily configured.

2) Provides a way to extend the programs by providing drop-in
functionality in the form of language independent software
components. New machine vision operations can be added to
the system arbitrarily as well as new user interfaces for
them. There are no arbitrary 1limits on the type of
operation that can be done or data that can be returned by

these computer programs.

} 4SOOI <WOL_oms000081.1> SUBSTITUTE SHEET (RULE 26)

REE TR

£

B i St ot L B L T SR AT

R et L R Ty

10

15

20

25

30

SDOCID: <WO___8948000A1_|_>

P, AT P A N e e e i YRLtE A S At AL L

WO 99/48000 PCT/US98/16062

3)

6)

8)

9)

Supports building the programs from a recipe database or
directly using an easy to use point and click graphical
user interface.

Allows access of any data in the step program by name for
easy scripting either locally or over a network and free
form expression support.

Provides a mechanism for expressing result data in the
step program in different systems of coordinates so that,
for example, measurements between features in different
cameras can be easily computed when the object is too big
to fit in one camera image.

Allows any such named data to be encoded in a form that is
compatible with the Internet addressing scheme known as
the Uniform Resource Locator (URL) address for access to
any data either locally or from remote host machines on an
Internet or Intranet network.

Provides a mechanism for the machine vision program to
create the user interface components that allow the
training and setting of parameters using a GUI (Graphical

User Interface) library native to the platform ({computer

‘or system) that the program is loaded on.

Allows the training and tryout (i.e. trial runs) of the
machine vision program on 'a host with the vision processor
plugged into a peripheral extension bus of the same host
computer or plugged into the peripheral extension bus of a
different host computer that is on the same network as the

setup and training host.

Allows the training and tryout of the machine vision

program on a host computer with a standalone vision

processor connected to the host system network.

10)Runs the machine vision computer programs unchanged on

different CPU architectures and takes advantage of image

processing acceleration hardware when available. More

SUBSTITUTE SHEET (RULE 26)

[NETER T

P PG P B PR P A S

B e e e 1 9 NIRRT A TR S A T R R B L SR SRR

10

i5

20

25

30

WO 99/48000 PCT/US98/16062

specifically the architecture supports a variety of
processing models .(corresponding to the runtime
configurations as disclosed in commonly-owned, co-pending
U.S. Provisional Patent application No. 60/066,339, filed
November 21, 1897, which 1is incorporated herein by

reference), including:

a) Execution of the program on a vision processor bpard
(the target) plugged in to a peripheral extension bus

of the host computer.

b

—

Execution of the program on the host using a vision
board plugged into the extension Dbus for image

acquisition and accelerated image processing.

c) Execution of the program on the host using a vision

board for image acquisition (frame grabber) .

d) For each output or result generated, a system of
coordinates which specifies the units this output is

expressed in is attached.

e) Execution of the program on a standalone vision

processor system (the target) connected to the host

over a network.

10) Allows machine vision programs to also be monitored
once running on the vision processor board or vision
processor target for the purpose of diagnostics and

debugging from a local host or a remote host.

The invention describes an object oriented method of
structuring a software step program, which creates machine
vision programs by composing a set of software objects or
steps self-organized into a hierarchical structure which
both provides the execution order and the connection of
inputs to outputs at each step and between steps.

Steps are also organized into an object-oriented

4

- vspooiD: Wo__sosaooont.1 » SUBSTITUTE SHEET (RULE.26)

P o b S N T L NSO RSP T YR
.

Y SRS Yot e

T e T

-

>

WO 99/48000 PCT/US98/16062

software hierarchy to take advantage of commonality between

steps that perform similar operations.

A step program encodes a wealth of information. For

example, a step program:

5 a)

. b)

10 c)
15
20

25

30

SDOCID: <WO__8848000A1_|_>

contains a list of operations that together make up the

machine vision application;

for each step (operation), encodes the set of parameters
and settings required to execute that step (operation)

successfully;

for each step (operation), defines the inputs that the
step (operation) accepts and the outputs or results that

are generated;

d) for outputs that are generated, attaches a system of

coordinate information so that results can be expressed in

real physical units;

e) contains information that allows for the calibration of
a system of coordinates to physical, real-world units
like inches or mm and also allows the conversion of

results from one systém of coordinates to another:

f) defines the physical relationships between a system of
coordinates by organizing them into a hierarchical tree
structuie referred to as a part step tree, which
allows, for example the description of a moving camera
by inserting a stage part step (i.e. the motion device
the camera is mounted on) between the camera system of
coordinates and the world system of coordinates
(usually the table or fixture the entire apparatus is

bolted on):

g) contains information to detect whether a particular
operation needs to be setup or trained by the operator of

the system before it can run successfully;

SUBSTITUTE SHEET (RULE 26)

> EAEeY AR

R IR F

T

e, 1 ge

23 vy

I
i
i

I
3

%

i
H

10

15

20

25

30

WO 99/48000 PCT/US98/16062

h) for each operation, contains information to invoke the
required user interface components that assist an operator
when setting up and training step programs regardless of
the GUI (Graphical User Interface) environment the step

program is loaded on:

i) for each operation, can construct an executable
computer program that runs on the host PC or on a vision
target board directly ana which dynamically detects
hardware and uses hardware acceleration when available;

and

J) names for each step operation as well as inputs,
outputs, settings and parameters, which provides a
straightforward mechanism for accessing any results in the
step program by name from an expression, sSpreadsheet or

script.

In addition to describing sequences of vision
operations, the disclosed step program architecture can also
be used to describe a variety of other cell control

operations which often have to be performed in conjunction

with vision processing. Such programs include but are not
limited to I/0, communications, and motion control
applications. The step program architecture can even be

used to exclusively describe such cell control programs that

do not even contain any vision processing at all.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other features and advantages of the present
invention will be better understood by reading the following
detailed description, taken together with the drawings
wherein:

Figure 1 shows the typical software components that

make up a machine vision program;

| \D0ciD: Wo__ssasooon 1 » SUBSTITUTE SHEET (RULE 26)

[P

10

15

20

25

30

SDOCID: <WO__9948000A1_I_>

WO 99/48000 - PCT/US98/16062 -

Figure 2 shows a sample user interface view of a step
program within a Host Graphical User Interface window;

Figure 3 shows how the step program of fig 2 is
executed and in what order steps run; ,

Figure 4 shows the internal step object representation
that supports this execution model;

Figure 5 details the flow of data within a step when it
is executed;

Figure 6 shows the object-oriented inheritance
hierarchy that supports both the step execution and data
flow models:

Figure 7 shows the object-oriented inheritance
hierarchy that supports the step execution late binding for
optimal performance;

Figures 8A-8C are block schematic diagrams showing the
host and target system network connectivity that are
supported by the object oriented method of the present
invention, for the purpose of creating, setting up and
trying out an applications program such as a machine vision
program; and

Figure 9 shows the relationship between the output
results generated by a step program and system of
coordinates in the context of a two camera sample step
program which calculates the distance between features in

separate camera images .

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

The machine vision step program architecture that is.
the subject of this invention is preferably implemented by a
set of software objects called steps organized in a
hierarchical tree structure. This representation 1lets
client code treat objects and composition of objects

uniformly. A sample tree structure representation of a step

7

SUBSTITUTE SHEET (RULE 26)

AN

WO 99/48000 PCT/US98/16062

program is shown in Figure 2.

Step Program Object Framework

B

As described herein for exemplary purposes, steps are
software objects (i.e. C++ Classes) which are combined to

5 form the step program. They are organized in a tree or

¢
%
%
H
5
S

hierarchical fashion where steps can contain other steps
(called children steps) to pefform training, preprocessing,
coordinate transformation and post processing operations.

Steps communicate parameters and results by using datum

10 objects.

Datum objects are software objects that providé
standard types for all results found in a vision application
and allow results from one step (output) to be used as
inputs to other steps. Steps and datum objects (datums) can

15 be edited graphically by using standard GUI component object
editors well known in the industry such as one or more of
the following generic component type editor such as tree

; ’ control, list Control, text control and/or picture control.
Editors are software objects that can create all the
20 necessary views and user interface controls to change steps
and datums using a point-and-click user interface. Figure 2
shows the editor object that is created to display an entire
step program graphically in a tree control window. .
In addition, each step and datum in a step program
25 contains a special identifier or GUID (Globally Unique
IDentifier) which allows the step or datum to dynamically

create the editor objects that let a user change parameters

and settings and train a step or datum. The GUID is stored
on the host in a special database sometimes referred to as a

30 “registry” in the Microsoft Windows operating system, as
well as inside the step and datum object itself.

The host provides standard operating system APIs

i 8

£ \SDOGID: WO__0848000A1_1_> SUBSTITUTE SHEET (RULE 26)

LEAYANLTALD

Wy e 1y

B S TSI PPt

SDOCID: <WO___9948000A1_|_>

10

15

20

25

30

WO 99/48000 PCT/US98/16062

(application programmer interfaces) to create an object
dynamically given its GUID. This, in essence generates a
dual object hierarchy where every runtime step or datum may
contain a pointer to an editor object providing a user
interface for manipulating the step parameters and inputs.
These editor objects on the host in turn create software
components which in the preferred embodiment are implemented
as ActiveX controls for Windows95 or NT operating systems,
that provide familiar views, windows and/or dialogs for
editing and training the step parameters.

On the target, these identifiers are either -ignored
when the step program is controlled by the host or are used
to generate runtime user interface editors to manipulate the
step inputs when the machine vision step program is running
in a standalone configuration (as described in next
section) .

Some steps create other steps to handle the runtime
processing and setup or training. These steps are
particularly useful in that they can assist the operator at
setup time with intelligent training. Intelligent training
is the operation wherein the step is shown a single sample
image representative of the features that need to be
detected during runtime and perform a training operation to
self-define the optimal set of runtime settings and
parameters.

The execution order is encoded by the step program 100
first by the position of the step in the tree, i.e. 1in the
order one would enumerate them by reading their name from
left-to-right and top-to-bottom. This 1is referred as
walking or traversing the tree making sure each position is
visited once until all steps have been traversed.

The execution order is further encoded by a special

attribute attached to each step in the tree, which can

SUBSTITUTE SHEET (RULE 26)

Ca . T e S L L LT L AP TRE L TR S AT S G SR LA A

Sy

YT ST R P I IR

;
k

i

;

ENSDOCID: <WO__9948000A1_{_>

g

10

15

20

25

30

WO 99/48000 PCT/US98/16062

modify the rule presented above. For example, step 112 in
step program 100 may have an attribute set which causes it
to be executed before step 110, therefore changing the
execution order as defined by the tree traversal rule
mentioned above. This is called a preprocessing step or
more rigorously a step that has the preprocessing attribute
turned on. As will be described later, attributes are not
restricted to being execution order modifiers.

In Figure 2, each icor.ic picture represents an
individual step operation of step program 100 according to
the present invention. Indented steps, in addition to their
tree organization, have the following attributes:

* Preprocessing steps, which: are executed before their

parent. (FindPinl, step 116, is an example of a

preprocessing step);

* Training steps, which assist the operator when setting up
the parameters of an operation. (Find Setup, step 118, is

an example of a training step); and

* Post-processing steps, which are executed after their
parent. (Warp Step, step 122, is an example of a post-

processing step).

Therefore, the execution order is encoded by the step
program 100 both by the position of the step in the tree and
by the set and selected pre/post processing attribute as
well.

Special steps called container steps .group together
children steps and set their execution order. These
container steps may also provide a common input to all their
children steps. For example, the SnapShot step, step 110,
defines the input image that all its contained children

steps, steps.112—128, operate on, while their order dictates

10

SUBSTITUTE SHEET (RULE 26)

R A

TR

S am e e et 3 R e

10

15

20

25

30

SDOCID: <WO__9948000A1_t_>

WO 99/48000 PCT/US98/16062

their rank of execution.

Figure 3 shows the step program execution order of the
step program 100 of Figure 2. The step program execution
begins with the acquisition of an image, step 112.
Following image acquisition, the program increments to the
next step in the hierarchy, which is the 2PinFind stép, step
114. However, since the 2PinFind step contains three
contained children steps, FindPinl, FindPin2 and Warp Step,
steps 116, 120 and 122, respectively, the program must
inspect each child step’s pre/post processing attribute in
order to execute the steps in their proper order.

In this example, since FindPinl and FindPin2, steps 116
and 120, respectively, are tagged as preprocessing steps,
they are executed before their parent step, which is the
2PinFind step, step 114. (Note that when the FindPinl step,
step 116, is executed, its contained child step, which 1is
the FindSetup step, step 118, is entirely skipped since its
SETUP attribute tags it as a Train only step and not as a
Runtime step.)

The next step in the execution order is the parent
step, step 114, the 2PinFind step. Following execution of
the parent, step 114, the program executes all contained
post-processing steps, which, in the present example
includes the Warp Step, step 122, including its contained
steps, which comprise - the DefectFinder and OCV Fontless
Tools steps, steps 124 and 126, respectively.' Finally, the
step program will execute the I/O output step, step 128 and
the step program will have been completed.

Referring to the représentation of the step program
shown in Figure 2, it can be seen that, in addition to
fixing the execution order, the children step inputs are
automatically connected to their parent container outputs.

Three basic software objects encode this internal data

11

SUBSTITUTE SHEET (RULE 26)

TP TSI MY

St

A L STSE

;
f NSDOCID: <WO___9948000A1_{_>

H

10

15

20

25

30

WO 99/48000 PCT/US98/16062

and execution flow. Figure 4 provides a detailed structure
of these software objects. The objects comprise step
objects, which may be parent objects or child objects, such
as step objects 200 and 300. Additional classes of objects
include reference objects, such as reference object 400 and
datum objects, such as datum object 500. These objects are
organized into an inheritance object-oriented hierarchy from
which other steps are derived from as shown in Figure 6.

To further define the hierarchical structure, steps
that are at the same indentation level, as shown in Figure
2, (e.g. steps 112 and 114 or steps 124 and 126) are
physically stored in a data structure called a map. This
map storage 1is part of the parent step object, which
contains all these children steps, i.e. the step from which

these children steps are directly indented. A map is a

~ standard C++ library container object that is used to store

and link together a set of arbitrary objects. In addition,
each object in the 1list can be individually tagged by an
attribute. In the current invention, attributes are used to
refine the execution order of Steps (i.e. preprocessing and
post processing) as well as mark special classes of steps
(SETUP steps and PART steps).

Any step within a program contains a list of contained
steps called a _children 1list (hereinafter childlist), 210
of Figure 4. Every step in a _childlist is tagged as
either: PRE (Pre Processing) (e.g. steps 211 and 212), SETUP
{Train), (e.g. step 213), PART (Calibration, coordinate
transformation), (e.g. step 215) or POST (Post Processing),
(e.g. step 214), to control the order in which they should
be executed with respect to their parent step. The
_datumlist 230 contains a list of the step inputs (IN), 231
and 232, outputs ({(OUT), 234 and resources (RES), 233.

Resources (or resource datums) are parameters or settings

12

SUBSTITUTE SHEET (RULE 26)

TN T R R T O

IATICSR AT L PSR ST O

reme D oy

P

10

15

20

25

30

WO 99/48000 PCT/US98/16062

that need to be set in order for that step to perform its
operation.

In addition, parent objects include _reflists, 220,
which 1list the set of objects that either are using this
object datums or need to be notified when the object values
are changed. This list typically contains editor objects,
which provide the operator of the system with a graphical
view of the step or datum on the screen. Figure 2 above is
an example of such an editor object.

Editors are created by using the _GUID (Globally Unique
Identifier), 240, stored inside every step or datum which
defines the type of object that can provide user interface
control for changing this step parameters and settings.

During step execution, (Figure 5) all the datums tagged
as IN datums 510, such as datums 1, 2 and 3 (512, 514 and
516, respectively) are read by the step and, based on its
internal resource datums, such as RES Datums 1, 2 and 3
(235, 237 and 239) the output datums, such as OUT Datum 1, 2
and 3 (236, 238 and 242) are calculated according to the
operation that the step is performing.

Each output datum has a pointer, which points to a
special step object called a Part step. Part steps contain
information about the units for output datums. A Part step
is a member of a separate tree of objects, called a “part
tree”, which is built when the step program 1is created.
Special steps in the object framework, like the SnapShot
step 110 of Figuré 2, create, when they are inserted into
the step program tree, additional steps to provide
coordinate systems or units to their output datums.

In the case of a SnapShot step, the output image is
associated with this special Part step called a Snap Part
step. The Snap Part step is stored in the child list of the
SnapShot step and given the attribute (PART) which flags it

13

SDOCID; <WO__0948000A1_1_> SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

;
;
1
I3
H
:

NSDOGID: <WO__8948000A1_1_» SUBSTITUTE SHEET (RULE 26)

1

WO 99/48000 - PCT/US98/16062

as a system of coordinates- type object. These special
objects are not executed at runtime but support the
Calibrate method once a camera has physically been placed
into position, either on a rigid stand for a fixed camera or
-on.a motion stage for a moving camera.

For the step program shown on Figure 2, the part tree
looks_like the following: ’

+WorldPart << always there, World system of coordinate
where everything is measured from

+SnapPart << each camera has a position in the World.

+WarpPart << Some vision tool rotate and move the
image mathematically, these generate system of coordinates
as well. '

In the above image, the WorldPart represents the system
of coordinates of the entire system with respect to some
known physical position (e.g. a table, or a room in which
the equipment is located). This is a default system of
coordinates which 4is created whenever a step program is
loaded from disk or created using editor objects.

The SnapPart represents the position of the camera in
the world created by the SnapShot step 110 of Figure 2.

The Waerart represents how the image coordinates are.
transformed through the process of warping the image created
by the WarpStep, step 122 of Figure 2.

-Each output datums, such as OUT Datum 1, 2 and 3 (236,
238 and 242) includes a part step (i.e. 501 of Figure 4)
that contains a pointer to a system of coordinates (object)
which encodes the units used by this output. For an output
result which is, for example, the position of a feature in
an image (such as a hole) which is encoded by two numbers x
and y, the system of coordinates consist of two axis where x
represent the pixel position along the horizontal axis of

the image and y represents the pixel position of the feature

14

I e LTI THRA YN ST TN sl e e fep e e R P e O R

:

SDOCID: <WO___9948000A1_|_>

T

10

15

20

25

30

WO 99/48000 PCT/US98/16062

along’ the vertical axis of the image, with pixel position
0,0 being the top-left corner of the image.
That coordinate system object is, itself, a step that
has the attribute "PART” active as shown at 501 in Figure 4.
These Part steps are inserted in the step program whenever
a step that generates an image as one of its result Output
datum is created.

For example, for the Step program 700 of Figure 9 which
calculates the physical distance between features (in the
present example “holes”) in separate camera images, consists
of two Snapshot Steps 702 and 704, each containing one
preprocessing AcquireStep 706 to capture the image from the
camera, and one postprocessing FindStep 708 to locate the
position of each desired image attribute e.g. (hole) (x and
Y coordinates of the “hole” center in each camera’s image
coordinate system), each snapshot step 704 creates a
SnapshotStep PartStep (i.e. Step with the attribute "PART"
set) and inserts it into its children list _childlist as
shown at 215 of Figure 4: The SnapPartStep encodes the
position of the origin 0, 0 -and axis (horizontal and
vertical) of the coordinate system attached to the Output
image Datum of the particular SnapshotStep. It also encodes
the unit of measurement that the features calculated from
this image are reported in.

Typically, all features and results extracted from a
camera image are reported in pixels until the camera 1is
calibrated to inches or millimeters. The Output Image Datum
of the SnapshotStep in turn contains a pointer to the
SnapPartStep-as shown in the Figure 4 datum list as output
datum item 500d.

Calibrating a camera is the process by which, once the
camera position has been measured or is known a priori in

the World (i.e. Camera 1 (710) and Camera 2 "(712) Position

15

SUBSTITUTE SHEET (RULE 26)

G I TR AT

10

15

20

25

30

NSDOCID: <WO____9948000A1_I_>

WO 99/48000 ~ PCT/US98/16062

in the table coordinate system WorldPart 705 of Figure 9),
position in a given camera image can be converted to
position in the scene (the “world”). For the step program
700 of Figure 9, the FindStep 708 reports the position (x,y)
of each “hole” or other attribute in the image being sought
after, in pixel coordinates as described earlier.

The x,y position is then converted to world or scene
X,Y coordinates by each SnapShot 702/704 PartStep of the
respective SnapshotStep output image Datum before the
physical distance between the two holes can be calculated.
These two coordinate systems are shown in . Figure 9 as
SnapPartCaml (X1,Y1) 710 and SnapPartCam2 (X2, Y2) 712.

The Snap PartStep, when executed at runtime, converts a
feature like the x,y position of each hole as in Figure 9
from pixel coordinates to camera coordinates so that
measuring the distance between the two holes, for example,
can be calculated. In fact the SnapPartStep steps of the
step program in Figure 9 convert the X,y locations of each
hole to a system of coordinates common to all cameras (i.e.
WorldPart coordinate system 705 in Figure 9).

The WorldPartStep 705, Fig. 9, represents the system of
coordinates of the entire system with respect to some known
physical position like the physical table or object to which
the two cameras are mounted on, and is created whenever a
Step program is loaded into the system either on a host
computer or on a vision processor system. Once the position
of each hole or other image attribute in the step program in
Figure 9 has been converted by each SnapPartStep to a common
system of coordinates (the WorldPart) the Pt-Pt Distance
step 714 . calculates the distance in WorldPart units
(typically inches or millimeters) between the holes or other
image attributes.

The _refto field of every datum object (e.g. 622 of

16

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

SDOCID: <WO___8848000A1__>

WO 99/48000 " PCT/US98/16062

Figure 6) handles connections between inputs of one step and
outputs of another. This field always points to a datum of
the same type that contains the values to be used by the
step during the execution of the step program.

Figure 6 describes the way the foundation objects are
organized. All basic objects can contain children objects,
this is shown by the composite object, 600. Steps are
composite objects that also contain datums objects 620, to
receive inputs and calculate output results. Every datum
object 620 contains one or more reference members 622
(_refto) so that steps can be connected together through
their outputs. An output datum in this representation is a
datum whose _refto pointer is pointing to itself. Editor
object 630 serves as input to Host display object 640.

An immediate advantage of this structure is that a
connected datum, i.e. a datum that is of the input or
resource type, can also keep its own value separate from the
one that 1s used when running. This is normally used to
store nominal values.
| Since every object in a step program is named, it is
possible to construct a string, which uniquely describes the
position or address of a result datum in the program. This
allows a scripting language, or a formula for a spreadsheet

cell, to build complex expressions that manipulate step data

directly after a step program has been executed. For -

example, in Figure 2, the FindPinl step, step 116, locates a
pattern in the image and returns its position as a point
with two coordinates {x,y}. This output point is called
“bestmatch” inside the FindPinil step. To manipulate the
point x coordinate from a script, an operator would simply
type, “FindPinl.BestPoint.x”. (Note " that
“FindPinl.BestMatch” uniquely identifies this point in the

Step program.) The full address that is guaranteed to be

17

SUBSTITUTE SHEET (RULE 26)

e e oD SRRH|

< AR S

e T R o I

TER

S

10

e R R T T T

15

20

25

30

R

WO 99/48000 PCT/US98/16062

unique is:
“VisionBoardO.InspectionStep.SnapShotStep.
2PinFindStep.FindStepl.BestPoint.x”.

The expression to find out if this coordinate is
greater or equal to zero is:

“FindPinl.BestPoint.x >= 0”.

Given this representation and the fact that the host
system is connected to the .vision processor using either a
local network (the vision processor on board the host system
as shown in Fig. 8A) or a physical network as shown in
Figures 8B and 8C, and also supported by co-pending U.S.
Patent Application No. 09/026,05z and entitled Apparent
Network Interface For And Between Embedded and Host
Processors incorporated herein by reference, it is possible
to encode the vision processor location into the datum
address for the purpose of displaying on the host results
that are calculated by a running machine vision step
program. '

This representation relies on the fact that the vision
processor board and/or host system is setup as a Web server
and can therefore answer connection from a Web browser
running on the local host system (Figure 8A) or a remote
host system (Figures 8B and 8C).

The full address is concatenated with the Uniform
Resource Locator address or URL of the vision processor
board or vision processor system that is controlled by the
host. This can be used to display within a Web page on the
host the data value that is being computed by the machine
vision step program executing on the vision processor. For
the expression above, the URL address is:
http://VisionProcessorNetworkName/exec/ShowValue?Inspections
tep.

SnapShotStep.2PinFindStep.FindStepl.BestPoint .x

18

, NSDOCID: <WO___9948000A1_|_> SUBSTITUTE SHEET (RULE 26)

" e TS A

SRS Sl

Y

10

15

20

25

30

e e o et et S 1 . e e % et i S k4 A L AT S

WO 99/48000 _ PCT/US98/16062
where:
a) http://VisionProcessorNetworkName,/ identifies the

vision processor board or system the host is connected to.
b) exec/ShowValue specifies the program on the vision

processor board or system fo call to get the value of the
data calculated by the machine vision step

program. InspectionStep....BestPoint.x is the address of the
Datum in_the step program that needs to be accessed as

described earlier.

Step Program Portable Execution

Step programs can be hardware or software encoded and
can be executed on different CPU architectures ‘and can take
advantage of hardware acceleration for image processing
operations at runtime. This is done by late-binding of a
step program to a hardware platform upon which it is to be
run.

In an object-oriented language, like C++, every object
that is allocated into memory also needs to be initialized.
Calling a special function of the object called a
constructor initializes an object. Because the step code
which implements the object functions or methods is part of
the application code running on that CPU and not part of the
step program saved on disk, it is possible to implement the
object or step functions differently depending on where the
object or step is loaded.

Figure 7 shows the techniques which are used at runtime
to efficiently execute a step program.

1. The root of the step progrmﬂ is a special container
object called a Target object, which, when constructed,

i.e. when the step program is 1locaded into memory

causing the constructor method to be called, scans the

computer for hardware resources. In particular, image

19

SDOCID: <WO__ 95400008115 SUBSTITUTE SHEET (RULE 26)

v AR
g

<o

AR e

g

SR A et

"

]
i

10

15

20

25

30

¢ NSDOCID: <WO___9948000A1_I_>

WO 99/48000 PCT/US98/16062

acquisition devices as well as pipeline image
acceleration hardware (as found on the Acuity Vision
Processor board described in commonly owned, co-pending
US Patent Application Ser. No. 08/953,772, incorporated
herein by reference, are detected. In addition, memory
is allocated to receive the images digitized from the
camera in a location where they can be efficiently

analyzed by the hardware."

At runtime, the steps 650, Figure 7, which perform image
processing operations construct low-level software objects
called agents 652a-652c, to analyze the image. These
software agents are created using a technique called a late
binding method. Late binding is the process wherein the
stép itself creates the software object(s) to perform the
processihg operation (i.e. the image processing step). Late
binding is the process wherein executable code is
selected/generated from a number of possible executable code
sets based upon certain characteristics such as physical CPU
present, operating system, type of memory, etc., with a view
toward maximizing performance. In the present invention,
late binding is utilized to optimize performance of the
image processing system based upon the physical location of
the image in the image memory.

As a result, the step program transparently supports a
number of runtime models. For example:

* The step program can be executed on a host CPU using
digitizer hardware, such as the digitizer described in
co-pending Provisional Patent Application No. 60/066,339
and previously filed U.S. Patent Application identified
as U. S. Patent Application No. 09/030,411 files Feb. 25,
1998 and entitled FLEXIBLE PROCESSING HARDWARE
ARCHITECTURE, both of which are incorporated herein by

20

SUBSTITUTE SHEET (RULE 26)

WO 99/48000 , ~ PCT/US98/16062

i

reference, as a frame grabber board directly connected to

the host CPU PCI bus.

. The step program can be executed on a host CPU. However,
imége processing operations can be accelerated by using a

5 vision processor such as described in commonly-owned, co-
pending U.S. Patent Application No. 08/953,772

incorporated herein by reference.

¢ The step program can be executed on a target CPU board as

describéd in commonly-owned, co-pending U.S. Patent

10 Application No. 09/030,411, with the board plugged inside
the host CPU PCI bus.

e The step program can be executed on a standalone target
CPU board which is connected to the host CPU over a
network or not connected at all, as described in the

15 above-referenced U.S. Patent Application No. 09/030,411.

Modifications and substitutions by one of ordinary skill
in the art are considered to be within the scope of the
present invention which is not to ‘be limited except by.the
claims which follow.

20 What is claimed is:

21

SUBSTITUTE SHEET (RULE 26) -

SDOCID: <WO___9948000A1_|_>

S A

£ e v e T

B ST G b S e S

10

15

20

25

¥ uSDOGID: <WO___9948000A1_1_»

WO 99/48000 PCT/US98/16062
CLAIMS
1. An object oriented method of structuring an

executable step program comprising a plurality of software
objects to facilitate the understanding, manipulation and
execution of said step program, said method comprising the
steps of: _

a) defining a plurality of individual steps of said
program, each of said plurality of steps including a set of
sStep program objects including inputs accepted by said steps,
operations performed by said steps and outputs generated by
said steps;

b) naming every step program object included in said
program; and

c) organizing said step program objects into a

hierarchical tree structure.

2. The method as claimed in claim 1, wherein said step
of organizing said step program objects further comprises
grouping steps that perform related operations as related

steps, including parent steps and contained children steps.

3. The method as claimed in claim 2, wherein said step
program objects comprise: steps, which are combined to form
said step program and which comprise datums, including input
datums, output datums and resource datums; and editor

objects, which create all views and user interface controls.

4. The method as claimed in claim 3, wherein said
editor objects create all views and user interface controls
using a Graphical User Interface native to an operating
System running on a computer upon which said executable step

program is loaded and run.

22

SUBSTITUTE SHEET (RULE 26)

Trrrges:

B T T T T

10

15

20

25

WO 99/48000° PCT/US98/16062

5. The method as claimed in claim 3, further
comprising the step of:

assigning a globally unique identifier (GUID) to each
step; and

storing each GUID in a database managed by an operating
System on a system on which is to run the executable step

program, as well as in each step and datum itself.

6. The method as c¢laimed in c¢laim 5, _wherein said

children steps are classified as: preprocessing steps, which

are executed before their associated parent step; training

- steps, which assist an operator in setting up step

parameters; and post-processing steps, which are executed

after their associated parent step.

7. The method as claimed in claim 2, wherein said step
of grouping said steps that perform related operations
comprises including a list of contained steps in each parent

step.

8. The method as claimed in claim 7, further
comprising providing at least one common input to more than

one child step.

9. The method as claimed in claim 3, wherein said
resource datums comprise parameters that should be set in
order to permit their associated steps to perform their

operations.

10. The method as claimed in claim 1 further including’

the step of naming at 1least one step program object
generated by said step program including combining a URL

Internet address encoding to act as a unique address for

23

SDOCID: <WO__9948000A1_1_> SUBSTITUTE SHEET (RULE 26)

O et

% 0 3 4

B Ty e

LTI P S e Ve

10

15

20

25

WO 99/48000 PCT/US98/16062

said at least one step program object which a step program

generates.

11. The method as claimed in claim 7, wherein said step
of grouping said steps that perform related operations
further comprises including a reference list in each parent
step, which lists the objects that utilize a common datum or

should be notified when object values are changed.

12. The method as claimed in claim 11, wherein said
grouping step further comprises including a reference member
field in each datum object, which connects inputs of one step

to outputs of another step.

13. An object oriented method of structuring an
executable vision system step program comprising a plurality
of software objects to facilitate the understanding,
manipulation and execution of said step program, said method
comprising the steps of:

a) defining a plurality of individual steps of said
vision system program, each of said plurality of steps
including a set of step program objects including inputs
accepted by said steps, operations performed by said steps
and outputs generated by said steps;

b) naming every step program object included in said
vision system step program; and

c) organizing said vision system step program objects

into a hierarchical tree structure.

24

NSDOCID: <WO__9948000A1_1_> SUBSTITUTE SHEET (RULE 26)

10

15

SDOCID: <WO___9948000A1_|_>

WO 99/48000 o ~ PCT/US98/16062

14. A method of structuring a software Step program to
provide enhanced portability of said step program, said
method comprising the steps of:

including a special container step object in said step
program, which scans a computer upon which said program 1is
loaded for available capabilities;

automatically allocating image memory in said computer
in a preferred location to maximize runtime performance of
said step program; and

automatically creating the most efficient runtime code

for executing said step program on said computer.

15. The method as claimed in claim 13, wherein said
step of automatically creating the most efficient runtime
code comprises creating image processing steps using a late
binding software programming technique to construct low-level
software objects which process an image in the fastest manner
possible based on the physical location of .the image in

memory.

25

SUBSTITUTE SHEET (RULE 26)

WO 99/48000 ~ PCT/US98/16062

1/8

SN

s

INPUT IMAGE SEGMENTATION AND
ACQUISITION PREP R02C:ESSING FEATURE EXTRACTION
1 2 3

CLASSIFICATION
TOLERANCE TEST || DECISION
CONTROL INPUT 4 2

8

PASS/FAIL
- RESULTS - REPORTS
6 LA

FIG. 1
(PRIOR ART)

¢ NSDOCID: <WO___9948000A1_I_>

e

PCT/US98/16062

WO 99/48000

2/8

¢ Old

8¢L——ndinQ ¢/

92100 SSBUOJADO Jy +
Yel—— lepuldlogjeq

¢cl——_ dajgdiepy &

0k~ zuidpuiy &
81— dnjagpuly

St~ udpuiy &

v l—~—deigpuiquide .

%

¢t l——daiga.nboy @
OlLl—c_daigioysdeug ¢ -

01— dsjguonoadsu) &

OP/EOgUOISIA B2

001

WNLva+

Sd315¢

(X0

mangor §

ALl e o A MR TN N a e b e,

RS- NEV ECFPRNEIE S

SDOCID: <WO___9948000A1_|_>

PCT/US98/16062

WO 99/48000

3/8

B PR AT o e N1

A L e T M

8et

1Nd1NO Ofi

€04

5T |

- —

1004 SS3TLNO4ADO

¥er

_ H3ANI410343a

-

[449
ddV¥M

vt
aNIdNId2

-

ocT | - 91T
¢NIdaNId INIJANIA

413

3HINOJV

81T
dNLISANIS

it B b S R L e e D L0 ek DAL D et Mt L s s

I NSDOCID: <WO,

___9948000A1_|_>

4

WO 99/48000 PCT/US98/16062
4/8
PARENT OBJECT ,f 210
200—" STEP CHILDREN LIST CHILD OBJECT
211 :
210 ~—— childlist ~{ PRe | stEP* }—— orep
ooo—t—refist |22 pre | step+ | s00S]
_/"’__datumlist 1| 213 —] SETUP | STEP*
230 /_GUID 214~ POST | STEP*
oa0 /] _name 015 —PABT | STEP*
220
ReFLSTLIST) REF OBJECT
- STEP REFERENCE
EDITOR* 400_/
DATUM* |
STEP* |
230
DATUM LIST f 500 ~ DATUM OBJECT
231+,
= IN |[DATUM*|-500a DATUM
232~ IN |DATUM* }-500b
233~ RES |DATUM*}-500c| | PART STEP*
234~ OUT _|DATUM* k—ory COORD
501f
FIG. 4

SDOCID: <WQ___9948000A1_|_>

o

WO 99/48_000 PCT/US98/16062
5/8
; 510 234 -
3 \ IN DATA " STEP OBJECT 236\\ OUT DATA
3 2
>12 paTum 1 O e Y pAaTUM 1
514 DATUM 2 childlist 238\ DATUM 2
516 — DATUMS3 | reflist 242 <4 DATUM 3
__datumlist
_GUID
> _name

233 ~__| RES DATA

235~_| DATUM 1
237~ DATUM?2

239 __ | DATUMS3

FIG. 5
HOST DISPLAY

COMPOSITE OBJECT OBJECT
COMPOSITE GUI
*"‘ 600 childlist 640
A reflist e
_GUID
_name
A ‘
sTEPOBJECT ©2° 2 DATUM OBJECT EDITOR OBJECT
6104 sTEP | 622 \|_DATUM 630 EDITOR
t 6124 datumlist _refto
f FIG. 6

[
- NSDOCID: <WO___ 9948000A1_|_>

B

R P Y L S T T

PCT/US98/16062

)
, WO 99/48000
6/8
STEP OBJECT AGENT OBJECT
650 L '
STEP AGENT
int MyRun() Int Go()
[
{ t
TargetCPU Agent Host CPU Agent Vision Acceleratorl
int Go() Int Go() Int Go()

SDOCID: <WO___8948000A1_1_>

L 652a

\ 652b

FIG. 7

k 652c

A3

WO 99/48000 ~ PCT/US98/16062

7/8

HOST TRAINING
, SYSTEM
g ' HOST SYSTEM

" VISION PROCESSOR
LOCAL— BOARD

NETWORK

SN— : e

FIG. 8A

HOST TRAINING HOST RUNTIME .
I SYSTEM ' SYSTEM
HOST SYSTEM HOST SYSTEM

NETWORK' I

VISION PROCESSOR
BOARD

FIG. 8B

HOST TRAINING VISION STANDALONE
| ’ SYSTEM PROCESSOR | SYSTEM
HOST SYSTEM SYSTEM

-~

NETWORK]

FIG. 8C

¢ NSDOGID: <WO___9948000A1_}_>

P e g <

.
T TEEV STy

T s R e e e &

P R TR ey

PCT/US98/16062

WO 99/48000

8/8

ot A NS T

6 'Old

¢hL—_cwepueddeug 6 ----
0LL—~_lwepueqdeug @ ---4
S0L—~_Hedpiom & -]
PLl—~—oouesigidid X ---
480L—_daigpuld - {*]
490/ —_dajgaiinboy E& - -
p0L~_deigioysdeus & - 3]
880/ —_ dajSpuld ¢~ -.. !
B90.—_ dejgaunnboy g - - _
- 20/—_ deigjoysdeug @ ﬁl._
dejguonoesdsu] & --]
oEmomco_mS By - ._H

WNLYA* | Sd31S0

X0

malA qor [

[RRVIEETIAR YRS

SDOCID: <WO___9848000A1_1_>

AN S AR N AN S L RISk o i ST MmN ey e e ialiadTianAILII AT 2N

Intermationsl application No.

INTERNATIONAL SEARCH REPORT

R R
.
¢

3 PCT/US98/16062
3

A. CLASSIFICATION OF SUBJECT MATTER

% IPC(6) : GOGF 9/445, 9/45

r US CL : 3957701

: According to Intcmational Patent Classification (IPC) or to both national classification and IPC

¥ B. FIELDS SEARCHED)

2 Minimum documentation searched (classification system followed by classification symbols)

u.s. : 3957701, 395/200.32, 345/348

%

Documentation scarched other than minimum documentation to the extent that such documents are inciuded in the ficlds searched

B

Java Essentials for C and C++ Programmers, Author: Barry Boone

Electronic data base consulted during the intemational search (namc of data basc and, where practicable, search terms used)

APD, STN

L PSR RIS G

& C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, wherc appropriate, of the relevant passages Relevant to claim No.

X US 5,566,294 A (KOJIMA et al.) 15 October 1996, ABSTRACT
lines 1-13, col. 32, lline 66-67, col. 29, line 30-33, col. 29 line 43-
47, col. 29, line 42-52, col.21, line 51-57, col. 42, line 32-34,
col.6, line 16-20, col. 1, line 7-10, col. 43, line 41-44, col. 36, line
46-47, col. 18, line 35-48, col. 43, line 66067, col. 44, line 1-2,
: col. 5, line 35-38, col. 8, line 59-65, col. 32, line 28-32, col. 34,
: line 20-32, col. 1, line 47-54, col. 40, line 3-10,

1-9, 11-13

X US 5,481,712 A (SILVER et al) 02 January, 1996, col. 72, line 14-
18, col. 23, line 44-46, col. 47, line 38-41, col.26, line 40-41, cil.
3, line 65-67, cil. 4, line 1, ABSTRACT, line 13-16, col. 47, line
38-41.

14, 15

1
£

: Further documents are listed in the continuation of Box C. D See patent family annex.

- Special categories of citsd documents: T Iater & blishod after tho i ! filing date or prionity
date and not in "conflict with the uppllc.hon but cited to understand

[

T e

the priority date claimed

A d t defining the 1 state of the art which is not considered the principle or theory under! th tio!
to be of particular reh:-nco ° lying the invention
g carlier document published on or afier the international filing date -x* documom of perticular relovance; t)he c‘!mmcd invention cannot be
d novel or to0 involve an inventive atep
£ *L* document which may throw doubts on prionity eluun(-) or which is when the document is taken slone
i cited to blish the publication date of or other
i special reason (s w,ﬁ“) Y document of particular relevance; the claimed invention cannot be
H considered to involve an inventive stcp when the docnmem is
4 0 document referring to an oral disck use, exhib or other combined with one or more other such d , such
means being obvious to & person skilled in the art
P document published prior to the intornationel filing dato but later than ege document member of the same patent family

Date of the actual completion of the intemational scarch

01 MARCH 1999

Date of mailing of the international search report

93 APR 1999

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Facsimile No. (703) 305-0040

e

Authorized officer S -
CHAMELI C. DAS %’”u/" A fhiTEALess

Telephone No. (703) 306-3014

Form PCT/SA/210 (second sheet)July 1992)«

- NSDOCID: <WO____8948000A1_[I_>

Fre.

RSN SPRPEPE eIl AMAARARS S AT Meds o NI ITTINN NS Sa ke e g e U LAD T ST A s Tt IO

INTERNATIONAL SEARCH REPORT Intemational application No.
PCTAUS98/16062

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category® Citation of document, with indication, where appropniate, of the relevant passages Relevant to claim No.
X Java Essentials for C and C++ Programmers, Author: Barry 10
Boone, Page 251, line 8-10
A US 5,793,964 A (ROGERS, et al) 11 August 1998 - 1-15
A 5,7(51,45] A (ROGERS et al) 23 December 1997 1-15

Form PCT/ISA/210 (continuation of sccond shect)(July 1992)w

SDOCID: <WO___8948000A1_|_>

trpsesmon miLaes

m.
&
>
2
=
0
LAd
=<
Q.
4
p =
[

ced TOH Woo ATE MR B Ol BN AL e el T

NETR LR VT YL SRR PRIy JC U YO S O SO R S

	2004-02-09 Foreign Reference

